Mutual features for pattern classification
نویسنده
چکیده
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE Doctor of Philosophy MUTUAL FEATURES FOR PATTERN CLASSIFICATION by Heiko Claussen The mean of a data set is one trivial representation of data from one class. This thesis discusses mutual interdependence analysis (MIA) that is successfully used to extract more involved representations, or “mutual features”, accounting for samples in the class. MIA aims to extract a common or mutual signature that is invariant to changes in the inputs. For example, a mutual feature is a speaker signature under varying channel conditions or a face signature under varying illumination conditions. By definition, the mutual feature is a linear combination of class examples that is equally correlated with all training samples in the class. An equivalent view is to find a direction to project the dataset such that projection lengths are maximally correlated. The MIA optimization criterion is presented from the perspectives of canonical correlation analysis and Bayesian estimation. This allows to state and solve the criterion for mutual features concisely and to infer other properties of its closed form, unique solution under various statistical assumptions. Moreover, a generalized MIA solution (GMIA) is defined that enables utilization of a priori knowledge. MIA and GMIA work well even if the mutual signature accounts only for a small part of the energy in the inputs. Real world problems do not exactly fit the signal model of an equally correlated common signature. Therefore, the behavior of MIA is analyzed in situations where its model does not exactly fit. For these situations it is shown that GMIA continues to extract meaningful information. Furthermore, the GMIA result is compared to ubiquitous signal processing methods. It is shown that GMIA extends these current tools visualizing previously hidden information. The utility of both MIA and GMIA is demonstrated on two standard pattern recognition problems: text–independent speaker verification and illumination–independent face recognition. For example, GMIA achieves an equal error rate (EER) of 4.0% in the text–independent speaker verification application on the full NTIMIT database of 630 speakers. On the other hand, for illumination–independent face recognition, MIA achieves an identification error rate of 7.4% in exhausive leave–one–out tests on the Yale database. Overall, MIA and GMIA are found to achieve competitive pattern classification performance to other modern algorithms.
منابع مشابه
Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملModeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification
Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...
متن کاملFeature Selection Using Genetic Algorithm with Mutual Information
Feature selection is the problem of selecting a subset of features without reducing the accuracy of representing the original set of features. It is the most important step that affects the performance of a pattern recognition system. In this paper, genetic algorithm (GA) is used to implement a feature selection in filter based method, and the mutual information is served as a fitness function ...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009